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Abstract
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tional capital, brand value) primarily yield private returns. I document that
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duced innovation by their rivals. Motivated by this evidence, I extend a canon-
ical endogenous-growth framework to endogenize firms’ allocation between
transferable and embedded intangibleswhile allowing for both horizontal and
vertical expansion. A key prediction of the model is that embedded intan-
gibles are the primary driver of a firm’s ability to expand across industries,
which also raises entry barriers for competitors and decreases social return
rather than promoting long-run growth. Thus, the shift in innovative effort
ultimately sacrifices economy-wide growth for firm-level market advantages,
and quantitative analysis indicates that size-dependent taxes can substantially
improve welfare.
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1 Introduction

Horizontal and vertical innovation are two essential strategies firms use to expand

their size (Klette and Kortum, 2004; Aghion, Harris, Howitt, and Vickers, 2001).

The literature mainly assumes that horizontal expansion does not negatively af-

fect the profitability of a firm’s existing operations.1 Consequently, there has been

limited attention to how diversification across industries influences the allocation

of investment in intangible assets and the associated trade-off between social and

private returns.

Expanding a firm’s business across segments2 requires organizational divisions,

which naturally influence managerial attention and innovation strategies. For in-

stance, Colgate-Palmolive operates with a narrow focus on Personal & Home Care

and Pet Nutrition, whereas Procter-Gamble manages a wide array of segments,

including Beauty, Grooming, Health Care, Fabric & Home Care, and Feminine &

Family Care. This divergence raises two critical questions: (i) How does diversifi-

cation shape a firm’s efficiency, market power, and allocation of intangible invest-

ment? (ii) What are the corresponding implications for social welfare?

To address these questions, I develop a unified framework to analyze how firm

diversification shapes innovation incentives and social welfare. First, I document

that firm productivity, markups, and the ratio of R&D to firm-specific intangible

investment (net SG&A)3 vary systematically with the number of firm segments.

Guidedby this empirical finding, I construct anendogenous-growthmodel inwhich

firms’ expansion decisions determine the strategic allocation of innovative effort.

1There are two common approaches to modeling horizontal expansion: one assumes diminish-
ing returns to scale, while the other assumes constant returns to scale and relies on Gibrat’s Law,
which states that innovation is independent of firm size.

2Firm segments, scope, and production lines are used interchangeably to indicate how broadly
diversified a firm is across industries. This diversification depends on how the firm defines its own
business. It may involve closely related industries or more widely diversified operations.

3SG&A also includes R&D expenditures; net SG&A is calculated by subtracting R&D, leaving
only expenses for employee compensation, advertising, and other operational costs of the firm.
See Section 2.2 for details.
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In the model, firms offset the profitability costs of diversification by shifting re-

sources away from R&D and toward firm-specific intangible investments. This re-

allocation raises entry barriers and tilts innovation incentives toward private re-

turns, at the expense of the broader social gains typically associated with R&D.

To formalize thismechanism, I classify intangible assets according to their trans-

ferability betweenfirms. In this framework, transferable intangibles includepatents

and software,with the associatedR&D investments emphasizing their non-rivalrous

nature and limited excludability (Romer, 1990; Aghion and Howitt, 1992; Gross-

man and Helpman, 1991). They can be transferred between firms and generate

spillover effects, with each successful R&D project building on previous product

improvements. Their benefits persist even if the firm exits the market. In con-

trast, embedded intangibles like brand value and organizational capital are inher-

ently firm-specific and inseparable from the firm that created them. They primar-

ily provide a firm-specific comparative advantage and do not generate spillovers.

Consequently, when a firm exits the market, the economic value of embedded in-

tangibles becomes a sunk cost4.

I further subdivided embedded intangibles into two categories based on their

effects on demand and supply (Table 1). Brand value 5 acts as a demand shifter, pos-

itively influencing the perceived quality of a firm’s output (Cavenaile and Roldan-

Blanco, 2021; Cavenaile, Celik, Roldan-Blanco, and Tian, 2025). Evidence also sug-

gests that brand value provides target marketing by increasing consumer aware-

ness, thereby incentivizing substantial firm investment in advertising (Cavenaile,

Celik, Perla, and Roldan-Blanco, 2025; Baslandze, Greenwood, Marto, and Mor-

eira, 2023). On the supply side, organizational capital is conceptualized as man-

agerial productivity, including the firm’s embodied managerial talent and its con-

4Transferable intangibles investment corresponds directly to R&D investments. By contrast,
embedded intangibles include advertising and organizational expenditures, which accumulate as
brand value and organizational capital.

5Alternatively, Pearce and Wu (2025) suggests that brand value is transferable between firms.
However, in the framework of this project, brand value is considered non-transferable, as its only
channel of transfer—throughmergers and acquisitions (M&A)—lies outside the scope of this paper.
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tribution to futureproductionprofitability (Carlin, Chowdhry, andGarmaise, 2012;

Eisfeldt and Papanikolaou, 2013; Prescott and Visscher, 1980)

Table 1. Taxonomy of Intangibles

Supply Side Demand Side

Embedded Organizational Capital Brand Value

Transferable Software, Patent

Imerge Compustat Fundamentals with Compustat Segment data and document

a key empirical finding: as firmsdiversify across segments, theirmarkups, produc-

tivity, growth rates, and the ratio of transferable to embedded intangible invest-

ment decline. To quantify competitive pressures, I use the product market fluidity

dataset from Hoberg, Phillips, and Prabhala (2014), which shows that more diver-

sified firms face lower competitive threats and operate in less fluid sectors. This

analysis is further refinedusing granular, within-industry product-scopemeasures

fromHoberg and Phillips (2025), enabling the disentanglement of sector-level ver-

sus within-sector expansion effects on firm dynamics. Furthermore, I employ Ko-

gan, Papanikolaou, Seru, andStoffman (2017) to obtain forward citationsperpatent

and value per patent, which proxy for the social benefits and private value of in-

novation.

Building on the empirical evidence, I extend the canonical endogenous growth

framework along two dimensions. The first dimension introduces vertical and

horizontal firm growth, with span-of-control frictions6 (Lucas, 1978) arising from

horizontal expansion. The second dimension endogenizes firms’ choices between

transferable and embedded intangible investments. The economy consists of a

final-good sector and a continuum of intermediate-good sectors, each featuring a

single superstar firm alongside a continuum of fringe firms. Superstar firms can

6See also Jovanovic (2025). Alternatively, Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018) use
skilled labor in operational activities as a fixed cost, creating a trade-off between its allocation to
R&D and operations. While an increase in firm scale raises operational demands, this does not
directly reduce firms’ efficiency or pricing power with size.
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invest in embedded intangibles, which enhance managerial productivity and the

perceived quality of their products through brand value and organizational cap-

ital, or in transferable intangibles, which improve product quality in two ways:

(i) by upgrading the quality of existing product lines, and (ii) by expanding their

portfolios through improvements in the quality of new product lines. Importantly,

internal quality improvements do not create span-of-control constraints, whereas

expansion into new product lines does. Moreover, brand value and organizational

capital transfer freely across a firm’s existing lines, while quality improvement re-

quires separate investments for each line. This asymmetry generates increasing

returns to scale for embedded investments as firms expand their product portfo-

lios.

Fringe firms cannot invest in embedded intangibles; their only path to becom-

ing a superstar is through radical innovation. When a superstar exits the market,

its transferable intangibles in that product line—existing quality—become freely

available to fringe firms. Under oligopolistic Bertrand competition, a superstar’s

markup in each production line is determined endogenously by the levels of trans-

ferable and embedded intangibles, as well as by the number of product lines it

operates. Moreover, superstars from other industries can enter a sector by im-

proving the quality of a production line and displacing the incumbent. Such entry,

however, is only feasible if their brand value and organizational capital are at least

as high as the incumbent superstar’s. Consequently, substantial investment in em-

bedded intangibles allows a superstar to strengthen itsmarket position and reduce

market fluidity.

The model predicts that horizontal expansion decreases managerial productiv-

ity and competitiveness due to span-of-control constraints. To offset these ineffi-

ciencies, multiproduct firms exploit cross-product synergies and reallocate invest-

ment toward embedded intangibles, which deliver increasing returns to scale but

simultaneously reduce market fluidity. This strategic shift extends the life cycle of

superstar firms in existing markets while generating three adverse aggregate con-
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sequences: (i) reduced markups and productivity for multiproduct firms as oper-

ational fragmentation intensifies; (ii) a contraction in the innovation possibilities

for new entrants; and (iii) depressed long-run quality improvements due to lower

investment in transferable intangibles.

I discipline the key parameters of themodel using the simulatedmethod ofmo-

ments (SMM). Based on the calibrated model, I examine how the relative shares

of brand value (demand-side) and organizational capital (supply-side) shape firm

dynamics. An increase in the share of brand value relative to organizational capital

induces firms to concentrate production within a single line, as brand value alone

cannot offset the managerial frictions associated with expansion. Consequently,

markups decline: the reduction in organizational capital lowers managerial pro-

ductivity and outweighs the demand-side gains from brand value. This shift also

raises entry barriers for potential entrants, thereby reducing market fluidity and

aggregate growth. By contrast, when organizational capital constitutes a larger

share, firms are more likely to expand, as organizational capital directly enhances

managerial efficiency. This fosters higher markups, increases market fluidity, and

economic growth.

Next, I run two counterfactuals: removing the span-of-control constraint and

eliminating embedded intangibles to isolate their effects on markups, firm size,

market fluidity, and aggregate growth. Removing the span-of-control constraint

allows firms to operate more product lines, raises average markups, increases in-

vestment in embedded intangibles (thereby reducing market fluidity), and raises

aggregate growth. Eliminating embedded intangibles concentrates production on

a single line, lowers markupsmodestly (0.5–1.5%), and raises aggregate growth via

a large increase in creative-destruction-driven fluidity.

In the last part of the quantitative analysis, I examine how misallocation oper-

ates through two channels: (i) markup dispersion and (ii) entry barriers created by

embedded intangibles. Pure markup dispersion accounts for only 0.5% of the out-

put loss. By contrast, removing entry barriers more than triples aggregate output,
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driven primarily by substantial quality-improvement gains while the contribution

of embedded capital falls slightly. Motivated by these results, I evaluate three tax

experiments: a size-dependent profit tax (10% → 12.5%), a flat 11.3% tax on embed-

ded/expansion investment, and their joint application. In consumption-equivalent

welfare, the size tax delivers the largest gain (+10.915%); the embedded-investment

taxes yield modest gains (+1.745% and +2.176%); and the joint policy produces the

most significant complementary benefit (+16.237%).

Related Literature. First, this paper contributes to the growing literature on in-

tangibles and their effects on firm dynamics, which suggests that intangibles in-

crease market concentration, markups, and reduce investment in tangible cap-

ital (Chiavari and Goraya, 2025; Crouzet and Eberly, 2019; Weiss, 2020). Build-

ing on this, De Ridder (2024) conceptualize software intangibles as firm-specific

fixed costs and show how incumbents’ strategic investments lower marginal pro-

duction costs, creating asymmetric barriers to innovation that favor incumbents.

Similarly, Aghion, Bergeaud, Boppart, Klenow, and Li (2023) distinguishes product

from firm-specific process innovation and highlights the role of information and

communication technologies in driving concentration. Relatedly, Cavenaile and

Roldan-Blanco (2021) and Cavenaile, Celik, Roldan-Blanco, and Tian (2025) show

that advertising can substitute for R&D and dampen innovation intensity, while

Pearce andWu (2025) examines brand-value transfer between firms in the context

ofmarket concentration. Mypaper contributes to the literature byproposing auni-

fied, generalizable taxonomyof intangibles andbymodeling their accumulation as

an endogenous outcome of firm optimization, rather than treating them solely as

expenses or fixed costs. This framework provides the microfoundations for firms’

investment and accumulation decisions across different intangible types, thereby

producing novel insights into how those choices shapemarkups, firm size, market

fluidity, and the nature of productivity of firms.

Second, this paper contributes to the literature on horizontal and vertical inno-

vation. Akcigit and Kerr (2018) develop an endogenous growth model in which
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incumbents engage in internal and external innovation with heterogeneous re-

turns. Garcia-Macia, Hsieh, and Klenow (2019) show that most innovation origi-

nates from incumbents improving existing products. In contrast, Berlingieri, De

Ridder, Lashkari, and Rigo (2025) documents that firms often expand through se-

quential product diversification rather than improving existing ones. My frame-

work synthesizes and extends these insights by focusing on sector-level horizontal

expansion that increases firm scope. This type of expansion is distinct fromwithin

similar product lines and highlights its direct implications for the span-of-control

constraint. The model thus reveals an additional cost of diversification: beyond

diminishing returns, it reduces productivity and markups by straining manage-

rial capacity. This mechanism highlights why strategic innovation portfolios are

essential for sustaining firms over the life cycle.

Third, this paper offers a complementary explanation for several documented

trends: reduced knowledge spillovers (Akcigit and Ates, 2021; Akcigit and Ates,

2023), decliningpatent quality (Olmstead-Rumsey, 2019), production lock-in ((Casal,

2024)), and strategic patenting (Jo and Kim, 2024). The mechanism centers on the

strategic reallocation of investment from transferable to embedded intangibles by

multiproduct firms. This reallocation depresses spillovers due to the firm-specific

nature of embedded intangibles. Consequently, the shift replaces economy-wide

product quality improvements with firm-specific productivity gains, which in turn

reducesmarket fluidity. This illustrates amechanism throughwhichfirmsexercise

broader control over their competitive environment, ultimately limiting rivals’ in-

novation potential and the diffusion of knowledge.

Fourth, this paper contributes to the literature on resourcemisallocation (Hsieh

and Klenow, 2009; Restuccia and Rogerson, 2008) by identifying two distinct chan-

nels. First, misallocation can arise from markup dispersion (Peters, 2020; Ed-

mond, Midrigan, and Xu, 2023), driven by the accumulation of both transferable

and embedded intangibles. Second, embedded intangibles create entry barriers,

amplifying distortions and reducing allocative efficiency.
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Fifth, the empirical and theoretical literature on the span of control constraint

hasprimarily focusedonhierarchical organization, knowledgeflow frictions,man-

agerial ability, and associated premiums (Smeets, Waldman, andWarzynski, 2019;

Bandiera, Prat, Sadun, and Wulf, 2014; Garicano, 2000; Bloom and Van Reenen,

2007). This paper extends the literature by adopting a macro perspective, exam-

ining how span of control constraints shape firm dynamics and growth, and high-

lighting their broader implications for innovation.

Outline. The remainder of the paper is organized as follows: Section 2 presents the

datasets and empirical facts; Section 3 introduces the theoretical model and char-

acterizes its equilibrium; Section 4 discusses the calibration; Section 5 examines

counterfactual analysis; Section 6 analyzes misallocation and policy implications;

and Section 8 concludes.

2 Datasets and Empirical Facts

In this section, I first describe the data sources andmeasurement details, and then

present empirical evidence on how the investment ratio, productivity, markups,

and market fluidity vary with firmmultiproductness.

2.1 Data Description

Compustat Fundementals and Segment. Compustat Fundamentals provides com-

prehensive firm-level financial information for publicly listed companies in North

America7, with extensive longitudinal coverage. It includes detailed balance sheet

items, income statement components, cash flow data, and key financial ratios. An

additional advantage is that it enables merging with external datasets through a

unique firm identifier.

Compustat also offers two distinct segment datasets: (i) the Historical Segment

7Foreign firms such as Toyota and Unilever are included in Compustat North America due to
their U.S. listings via AmericanDepositary Receipts (ADRs). Although they adhere to home-country
governance, these firms comply with SEC reporting requirements. Excluding them does not affect
the paper’s main conclusions but would reduce the sample size by roughly 25%. Thus, they are
retained in the main analysis. See Figure A2
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dataset, which contains buyer–supplier relationships and firm segmentation with

long-term coverage8, and (ii) the Compustat Segment dataset, introduced in 2016,

which provides more detailed segment-level information but with limited histori-

cal depth. 9 Tomaximizeboth coverage anddetail, I combine two segment datasets.10

To estimate markups, productivity, and the investment ratio across production

lines, I merge the Compustat Fundamentals and Segment datasets.11

Fludity and Firm Scope Dataset. The product market fluidity metric from Hoberg,

Phillips, andPrabhala (2014)(HPP)measures the rate atwhichfirms in similarmar-

kets change their product or service offerings annually. It is calculated using natu-

ral language processing (NLP) on the product descriptions fromfirms’ annual 10-K

reports filedwith the SEC. Thismethod tracks year-over-year changes in how com-

panies describe their business. A high fluidity score indicates that competitors are

rapidly adapting by launching new products, shifting strategies, or entering new

markets. Consequently, firms inhigh-fluiditymarkets face heightened competitive

threats from rivals reconfiguring their offerings and positions.

Hoberg and Phillips (2025)(HP) construct their firm scope dataset using a sim-

ilar text-based methodology as their fluidity metric. By applying NLP to product

descriptions in firms’ annual 10-K reports, they calculate pairwise similarity scores

between all public firms. This methodology allows them to identify a firm’s num-

ber of distinct productmarkets based on the uniqueness of its product descriptions

8Under Regulation SFAS No. 131—codified as ASC 280 after 2009—U.S. public firms are required
to disclose the identity of any customer accounting for more than 10% of total revenue, along with
the nature of the products or services provided to that customer. These mandated disclosures con-
stitute the foundation of the Historical Segment datasets.

9In this project, for the Compustat Historical Segment dataset, geographic and operational seg-
ments are excluded; only business segments are retained. For the Compustat Segment dataset,
only non-missing entries from the Product–Service (PD-SRVC) category are included.

10Whensegment information for afirm is available in theCompustat Segment dataset, I prioritize
that source. Otherwise, I use data from the Historical Segment dataset.

11Themerged Compustat dataset contains fewer firms than the Fundamentals database because
segment information is unavailable for some firms. In addition, I restrict the sample to firms with
positive R&D and SG&A expenditures. This cleaning andmerging process does not affect the repre-
sentativeness of themerged dataset relative to the full Compustat Fundamentals sample, see Figure
A5.
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relative to others. The key advantage of this dataset lies in its granular, text-based

measurement of firm scope, which offers amore nuanced and dynamic alternative

to static industrial classification codes (NAICS)12

Forward Citation and Patent Value Dataset. Kogan, Papanikolaou, Seru, and Stoff-

man (2017) dataset contains patent-level information, including patent ID, filing

and issue dates, firm identifiers, forward citations, and patent value. Forward ci-

tations are calculated as the total number of subsequent citations each patent re-

ceives, including citations from the patent-owning firm. The private value of each

patent is estimated using stockmarket reactions around the patent grant date, cap-

turing investors’ expectations of future profits.

2.2 Measurement

Productivity and Markup Estimation. I estimate firm-level total factor productiv-

ity using the approach developed by Gandhi, Navarro, and Rivers (2020)13. They

propose a nonparametric identification strategy that uses a transformation of the

first-order condition for intermediate inputs to isolate flexible-input effects and

identify the production function and input elasticities without relying solely on

proxy inversion. To estimate firm-level markups, I follow the methodology of De

Loecker, Eeckhout, and Unger (2020), defining markups as the ratio of sales to the

cost of goods sold (cogs) multiplied by the output elasticity of the variable input,

which is obtained from the first-stage production function estimation using Levin-

sohn and Petrin, 2003.

Investment Ratio. Following Peters and Taylor (2017), I measure two categories

of intangible investment. Total R&D expenditures are treated as investment in

transferable intangibles.14 On the other hand, 30% of Selling, General, and Ad-

12For a comparative illustration of firm segment classification between the Compustat Segment
and HP Firm Scope datasets, see Tables A1 and A2.

13The productivity estimation results are robust to alternative production function estimation
methods, including those proposed by Ackerberg, Caves, and Frazer (2015) and Levinsohn and
Petrin (2003), see Figure A4. For methodological details, see Appendix A.1

14Peters and Taylor (2017) refer to this as knowledge capital, which is termed transferable intan-
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ministrative (SG&A) expenses, net of R&D, is treated as investment in embedded

intangibles. Net SG&A primarily includes employee compensation, advertising,

and other expenditures necessary to sustain firm operations. Only a fraction of

these expenses is considered intangible investment, as the remainder reflects rou-

tine operating costs.

2.3 Empirical Facts

Figure 1(A) and Figure 2(A) document an inverse relationship between a firm’s

numberof production lines and its productivity, productivity growth, andmarkups15.

This pattern is consistent with a span of control constraint: as firms expand their

scope, managerial attention is weakened per line, reducing efficiency and pricing

power.
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4

6

8

−0.01

0.00

0.01

1 2 3 4 5 6
Number of Production Lines

P
ro

du
ct

iv
ity G

row
th

Growth Productivity

(B) Forward Citation and Value per Patent

1.0

1.5

2.0

2.5

3

4

5

6

1 2 3 4 5 6
Number of Production Lines

F
or

w
ar

d 
C

ita
tio

ns
 p

er
 P

at
en

t

V
alue of Innovation per P

atent

Cites per Patent Value of Innovation per Patent

Figure 1. Productivity, Growth & Forward Citation / Value per Patent by Production Line

Note: The sample excludes firms in the utilities and finance sectors, as well as those with missing
or non-positive R&D or SG&A. For forward citations and patent values, observations with missing
or non-positive patent values are also excluded. The growth rate is defined as the two-year log
change in productivity, ∆2 ln(prod)i,t = ln(prodi,t) − ln(prodi,t−2), averaged over 2005–2019 and
winsorized at the 10th and 90th percentiles. Log productivity is measured from the 2019 cross-
section and winsorized at the 95th percentile. Forward citations and value per patent are averaged
over 2015–2019 and winsorized at the 5th and 95th percentiles.

gibles in this paper.
15Thisfinding alignswith thepatternAutor, Dorn, Katz, Patterson, andVanReenen (2020), where

higher-productivity firms charge higher markups.
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Figure 1(B) suggest that, on average, forward citations per patent decline as the

number of production lines increases. This pattern implies a reduction in the so-

cial value of patents as firms diversify. In contrast, the private value of innovation

per patent appears to rise with additional production lines, moving in the opposite

direction to forward citations. The growing divergence between these two mea-

sures highlights a misalignment between the private surplus captured by firms

and the social value generated by their patent output. On the other hand, Fig-

ure 2(B) indicates that the composition of intangible investment is non-uniform

and varies systematically with firm scope. Firms with fewer lines tend to prior-

itize transferable intangibles, whereas firms that expand into multiple products

increasingly allocate investment toward embedded intangibles to reinforce com-

petitive advantages in existing lines. Moreover, Figure 2(C) shows that markets

dominated bymultiproduct firms are less fluid than those dominated by firmswith

fewer products.16 A strong negative correlation between market fluidity and the

investment ratio suggests that larger embedded intangible investments strengthen

incumbency,makingmarket entry anddisplacementmoredifficult for rivals. These

relationships are formally confirmed by the regression estimates in appendix Ta-

ble A4, which control for two-way fixed effects. The results show a significant neg-

ative relationship between the number of production lines and both productivity

and markups, with even stronger negative coefficients for investment ratios and

market fluidity. Crucially, in appendix Figure A3 demonstrated that these patterns

are not merely explained by firm size or age, underscoring their unique link to a

firm’s expansion strategy.

To investigate why firm scope affects margins, I compute firm variables using

the HP firm scope dataset. In the Appendix, Figure A1 and Table A5 show that

these measures increase with firm scope, in contrast to the patterns observed us-

ing Compustat Segment data. This stark divergence suggests that diversification’s

effect is not uniform. Instead, it critically depends on the type of expansion: scope

16See Table A3 for summary statistics.
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increases margins when it involves entering closely related markets, but it under-

mines them when it forces expansion into a distant sector.
(A) Markup
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Figure 2. Markup, Investment Ratio, and Fluidity with Production Lines

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Markups, the investment ratio, and market fluidity are measured for the
2019 cross-section. The investment ratio is transferable over embedded investment which is de-
scribed in Section 2.2. The investment ratio is winsorized at the 95th percentile, markup at the
90th percentile, and labor market fluidity at the top and bottom 5th percentiles. For calibration
purposes, fluidity is normalized using min-max scaling. Each value x was transformed according
to xscaled = (x−min(x))/(max(x)−min(x)), mapping all values linearly into the range [0, 1].

3 Theoretical Model

This section develops an endogenous growth model to characterize the equilib-

rium relationship between innovation, intangible heterogeneity, and firm scope.

Unifying the vertical innovation framework of Aghion, Harris, Howitt, and Vick-

ers (2001) with the horizontal expansion mechanism of Klette and Kortum (2004),

the model introduces two key elements: heterogeneity in intangible investment
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and a span of control constraint. These features jointly determine firms’ invest-

ment decisions, markups, and output based on their competitive positions and the

composition of their intangibles.

3.1 Economic Environment

Preferences. In this economy, time is continuous represented by t, and household

preferences are described by a logarithmic utility function:

∫ ∞

0

e−ρt ln(Ct) dt, (1)

whereCt represents household consumption, and ρ > 0 denotes the time discount

rate. The budget constraint is expressed as

Ȧt = rtAt + wt − Ct. (2)

The termAt represents the total assets in the economy at time t and the labor sup-

ply is normalized to 1. I normalize the price of the consumption good; therefore,

wt and rt show the relative prices of wage and the interest rate, respectively. Since

households own firms, total assets in the economy can be expressed as the sum of

the firm values

At =

∫ 1

0

(
Vsjt + Vfjt

)
dj,

where Vsjt and Vfjt denote the values of superstar and fringe firms in the interme-

diate good sector j at time t.

Final Good Technology and Market Structure. The final good sector used for con-

sumption is produced according to the following technology:

ln(Yt) =

∫ 1

0

ln(yjt) dj. (3)

It is produced using a continuum of intermediate varieties j ∈ [0, 1] in a perfectly

competitive market. In each intermediate good sector, one superstar firm, ysjt,
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and a continuum of homogeneous small firms, yfjt, compete à la Bertrand to sup-

ply the final good producer. Their output is aggregated by a constant elasticity of

substitution:

yjt =
(
χ(est) y

ε
sjt + yεfjt

) 1
ε , (4)

where ε ∈ (0, 1). In each production line j, a superstar firm s may own multiple

lines. It is characterized by the countable set of lines for which it owns the leading

technology, Js ⊆ [0, 1]. The number of leading product lines owned by superstar

firm s is given by ns = |Js| ∈ Z+.

Since the superstar firm has a differentiated product, the term χ(ξest) is an en-

dogenous and concave demand shifter, defined as χ(ξest) = (ξest)
β. Here, est rep-

resents firm s’s embedded intangibles, while ξest denotes the portion of embedded

intangibles associated with brand value, with ξ ∈ (0, 1). The parameter β ∈ (0, 1)

captures the curvature of the demand shifter. If the relative brand value of a su-

perstar firm increases, the perceived benefit (quality) of its product in the final

goods sector will be higher compared to that of fringe firms. For simplicity, the

embedded intangible level and brand value of fringe firms are normalized to one.

Finally, fringe firms are homogeneous within each intermediate sector and can be

represented as:

yfjt =

∫ 1

0

yijt di, (5)

where each fringe firm i ∈ (0, 1).

Superstar Firm Production. The production function for superstar firm s in line j

at time t is given by

ysjt = qsjt · ψ(est, nst) · lsjt, (6)

with ψ(est, nst) =

(
(1− ξ) est

)α
γ nαs

st

.

The term qsjt · ψ(·) represents the total productivity of firm s in production line j,

where qsjt denotes product quality and ψ(·) captures the firm’s managerial produc-

tivity. The input lsjt is the quantity of labor employed by superstar firm s in line j.
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The component (1− ξ)est represents the fraction (1− ξ) of embedded intangibles

interpreted as organizational capital, which improves managerial efficiency. The

variable ns denotes the number of product lines owned by firm s. As ns increases,

managerial productivity per line declines due to the span of control—expansion re-

duces the firm’s ability to effectively oversee each individual line17. Furthermore,

the curvature of organizational capital and the span of control constraint are gov-

erned by α and αs, respectively, while the value of γ determines whether it repre-

sents a cost (γ > 1) or a benefit (0 < γ < 1) scale for managerial quality.

Fringe Firm Production. Fringe firms produce output according to a linear tech-

nology:

yfjt = qfjt · lfjt, (7)

where qfjt denotes productivity and lfjt is labor input. Unlike superstar firms, a

fringe firm operates in only one sector and has a managerial quality normalized

to 1. Its productivity is inherited: when a superstar firm exits, its transferable in-

tangible assets, such as patents, become publicly available, allowing a fringe firm

to adopt the previous leader’s productivity level. Finally, as fringe firms produce a

homogeneous good, they are price takers.

Investment Functions and Innovation. A key assumption of the model is that qual-

ity improvements in each production line require separate investments, whereas

embedded intangibles are freely mobile across a firm’s production lines. Thus, a

successful investment in embedded intangibles simultaneously improves thebrand

value and the organizational capital of all production lines. Under this framework,

superstar firms face three investment decisions: they can expand their portfolio

with new production lines, improve the quality of existing lines through transfer-

able intangibles, or improve brand value and organizational capital of all lines via

embedded intangible investments. These investment scenarios are illustrated in

Figure 3.

17The span of control constraint imposes a natural upper bound n̄ on horizontal firm expansion.
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The variables IEmbs,j,t , I Ints,j,t, and IExs,j,t represent superstar s’s investment in embed-

ded intangibles, internal transferable investment on its own production lines, and

external transferable investment on other production lines, respectively. If a firm

is a leader in at least one production line, it can conduct an external innovation.

Each unit of investment generates a successful flow rate of innovation on internal

zInts,j,t, external zExs,j,t, and embedded intangible level zEmbs,j,t , respectively. Investments

occur with convex costs and represented by

I Intsjt = γInt
(
zIntsjt

)ϑInt

Yt , IExsjt = γEx
(
zEx
sjt

)ϑEx

Yt (8)

and IEmbsjt = γEmb
(
zEmb
sjt

)ϑEmb

Yt.

In the above expressions, the investment cost function scales with the size of the

economy, Yt. The parameters γInt, γEx, and γEmb determine the cost scale of the

investment functions, whereas ϑInt, ϑEmb, and ϑEx determine their curvature, re-

spectively. Moreover, the total investment in transferable intangibles by a super-

star firm in production line j at time t is equal to

ITsjt = I Intsjt + IExsjt. (9)

Figure 3. Firm Investment and Innovation Types

Fringe firms invest only in transferable intangibles within their production line,

17



aiming to achieve drastic innovations that could elevate them to become a new

superstar. Fringe firm investment in transferable intangible, followed by

IFrisjt = γf
(
zFri
sjt

)ϑf

Yt. (10)

The term γf represents the fringe firms’ cost of scale, and ϑf curvature of their

investment.

On each production line, firms invest in transferable and embedded intangibles

to improve product quality and, jointly, to increase brand value and managerial

productivity. The dynamics are given by

qsjt = λmsjt qsj0, and est = θkst ej0, (11)

with initial levels qsj0 = 1 and ej0 = 1. The variablesmsjt and kst denote the cumu-

lative numbers of product-quality and managerial/brand-improving innovations

by firm s on line j up to time t, respectively. When a firm successfully innovates

between t and t+∆t, its quality increases by a factor λ > 1. Brand value andman-

agerial productivity evolve similarly; however, improvement by a factor θ > 1 is

firm-specific and depends only on firm s.

Upon exit of the superstar firm, its transferable technology becomes imitable,

allowing fringe firms on production line j to adopt it. Consequently, the quality

gap between a superstar firm and a fringe firm in line j at time t can be expressed

as
qsjt
qfjt

=
λmsjt

λmfjt
= λmsjt−mfjt = λmjt , (12)

where mjt ≡ msjt − mfjt denotes the technology gap in transferable intangibles.

Since the embedded level of fringe firms on each production line is normalized

to one, the gap in brand value and managerial quality is given by the superstar’s

embedded stock:
esjt
efjt

=
θksjt

1
= θkst , (13)
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where kst represents gap in embedded intangibles. To ensure a finite state space, I

impose upper bounds m̄ and k̄ on the transferable gapmjt and the embedded gap

kst, respectively.

Creative Destruction. Both superstar and fringe firms engage in creative destruc-

tion via product quality innovations, but the takeover dynamics differ between

them. If a superstar firm s successfully makes an external innovation at a flow

rate zExi,j,t, this innovation is assigned to a randomly chosen production line j′. It

establishes firm s as the new superstar on the production line j′ if and only if its

embedded intangible level is at least as high as the incumbent’s. The probability

that an external innovation from firm s displaces the incumbent on a randomly

chosen line is

pExs≥s′ ≡ P
(
es,t ≥ es′,t

)
, (14)

where es,t and es′,t denote the firm-level embedded intangible levels of firm s and

the incumbent superstar s′ at time t, respectively. Hence, even if firm s achieves

creative destruction in line j′, this alone does not ensure leadership: the firm’s

embedded intangible level must also be at least as high as that of the incumbent

superstar on the target line.

On the other hand, fringe firms already in the market have a baseline level of

brand value and managerial productivity normalized to 1. To effectively challenge

a superstar firm, fringe firms must undertake drastic innovations that neutralize

both the superstar firm’s product quality and its embedded intangible level advan-

tages.

3.2 Equilibrium

This section characterizes the general equilibrium of the model, which consists

of a static and a dynamic component. The analysis begins with the static equilib-

rium, determining prices and allocations for a given set of states. Subsequently, I

define the Markov Perfect Equilibrium for the dynamic game, outlining the value

functions, optimal policy functions, and the evolution of the aggregate state distri-
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bution.

Household’s Problem. Household maximizes utility with the Euler Equation:

Ċt

Ct

= rt − ρ. (15)

Along the balanced growth path, consumption and output grow at the same rate,

g = r − ρ, and the transversality condition holds.

Final and Intermediate Good Sectors. The final-good producer’s demand for the

continuum of intermediate goods on line j satisfies

pjt =
Yt
yjt
. (16)

This implies the demand functions for the superstar and the fringe firms:18

ysjt = p
ε

1−ε

jt p
1

ε−1

sjt Yt
(
χ(es)

) 1
1−ε and yfjt = p

ε
1−ε

jt p
1

ε−1

fjt Yt, (17)

where psjt and pfjt represent the product prices of the superstar and fringe firms,

respectively. Furthermore, pjt is the ideal price index for production line j, given

by the following equation:

pjt =
((
χ(es)

) −1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

) ε−1
ε . (18)

Prices andMarket Share Function. The Cobb-Douglas production function for the

final good indicates equal expenditure shares across all production lines. Themar-

ket share of superstar firm s in industry j at time t is defined as

psjtysjt
pjtyjt

=
psjtysjt
Yt

= p
ε

1−ε

jt p
ε

ε−1

sjt χ(es)
1

1−ε ≡ ϕsjt. (19)

Since the sum of market shares equals one, the fringe firms’ share is 1− ϕsjt. The

18See Appendix B.2 for the full derivations
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equilibrium price of the superstar firm on production line j at time t under à la

Bertrand competition19 is then given by:20

psjt =
1− ε ϕsjt

(1− ϕsjt) ε
MCsjt, (20)

where MCsjt = wt ×
γs n

αs
st

qsjt
(
(1− ξ)est

)α denotes the marginal cost of the superstar

firm, and the fringe firms’ price is equal to their marginal cost21. The superstar

firm’s price equation displays that its price is positively correlated with product

quality and embedded level, while it is inversely related to the number of produc-

tion lines operated. The price ratio of fringe firms to superstar follows

pfjt
psjt

=
(1− ϕsjt)ε

1− εϕijt

· λmj

(
(1− ξ)est

ns

)α

. (21)

Using the definition of market share in equation (19) and substituting the ideal

price index from equation (18), the market share of the superstar firm can be ex-

pressed in terms of relative prices as

ϕsjt =
1

1 +

(
1

(ξest)
β

1−ε

(
pfjt
pijt

) ε
ε−1

) . (22)

Replacing the relative price ratio with equation (21) shows that the superstar firm’s

market share depends on the quality gap mj, embedded intangible level est, and

the number of production lines ns it operates.

Profit, Markup and Labor Demand. The static operational profit of the superstar

19For the Cournot Competition version see Appendix B.4
20See Appendix B.3 for the full derivations
21Even though fringe firms lack independent pricing power, their presence creates a competitive

constraint that disciplines superstar firms. This competitive pressure forces superstars to engage
in limit pricing strategies, preventing them from fully exercising theirmarket power and extracting
monopolistic rents.
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firm is proportional to its market share and the size of the economy:

πsjt =
(1− ε)ϕsjt

1− εϕsjt

Yt, (23)

with the corresponding markup given by

σsjt =
1− εϕsjt

(1− ϕsjt) ε
. (24)

Both markup and profit increase with market share. However, because market

share on a given line is inversely related to the number of lines a firm operates,

a superstar’s markup and profit decrease, reflecting the natural consequence of

diminishing managerial productivity across production lines. The optimal labor

inputs for superstar and fringe firms, respectively, are22

lsjt =
ϕsjt

σsjt
ω−1
t , (25)

lfjt = (1− ϕsjt)ω
−1
t , (26)

where ωt =
wt

Yt
denotes the wage share of the economy.

The static equilibrium provides only an implicit solution. Nevertheless, the

model yields tractable dynamics because the equilibrium outcome for a superstar

firmdepends solely on itsmarket share, which is in turn determined by the quality

gap, the level of embedded intangibles, and the number of production lines oper-

ated. This tractability makes it possible to analyze firms’ endogenous investment

decisions in different types of intangibles and to study how these choices affect

firm dynamics.

Superstar Value Function. The superstar value function Vt(m, est, ns) relevant pay-

off depends on the quality gap vectorm = {mj}ns
j=1, embedded intangible level est,

and the number of production lines the superstar firm has ns. Superstar firm s

22See in Appendix equation (63) for details.
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optimizes the flow rate of innovation of zIntsjt , zEx
sjt , and zEmb

stj to maximize the value

function given by equation 27.

The left-hand side of the value function shows the return on the value function

and its gain over time. The first line on the right-hand side represents the profit

of the superstar firm in production line j. The second line’s first term shows that

with the flow rate of innovation pExs≥s′ z
Ex
sjt , firm s increases its production line from

ns to ns + 1, while the subsequent terms describe how the superstar increases the

transferable intangible gap by one rung with the flow rate of innovation zIntsjt. The

third line shows that firm s can increase its embedded intangible level one rung

across all production lines, and the next term shows that superstars in other indus-

tries can innovate and firm s exit production line j. The last three terms represent

the cost of investment in improving the existing production quality, improving the

embedded intangible level, and taking on a newproduction line, respectively. Cost

function details are described in equations (8).

rtVt(m, es, ns)− V̇t(m, es, ns) = max
zInt
sjt ,z

Ex
sjt ,z

Emb
sjt

ns∑
j=1

(
πjt(mj, es, ns)

+ pExs≥s′ z
Ex
sjt

(
Vt((mj, 1), es, ns + 1)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Expansion with new production line

+ zIntsjt

(
Vt(mj + 1, es, ns)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Internal innovation

+ zEmb
sjt

(
Vt(mj, es + 1, ns)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Innovation on embedded

+ pExs′≥sZ
Ex
jt

[
Vt(mj, es, ns − 1)− Vt(mj, es, ns)

]︸ ︷︷ ︸
Superstars in oher industries innovation

+ Zf
jt

(
Vt(mj, es, ns − 1)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Fringe firms’ innovation

−γInt
(
zIntsjt

)ϑInt

Yt − γEmb
(
zEmb
sjt

)ϑEmb

Yt

− γEx
(
zEx
sjt

)ϑEx

Yt

)
(27)

Additionally,ZEx
jt andZf

jt represent, respectively, aggregate external innovation by

superstar firms and aggregate innovation by fringe firms:

ZEx
jt =

∫ 1

0

zEx
sjt dj, Zf

jt =

∫ 1

0

zijt di.
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The value function of fringe firms is not explicitly described here. Themain rea-

son is that fringe firms canmake a drastic innovation that displaces the incumbent

superstar in a given production line. Consequently, regardless of the incumbent’s

quality or embedded intangible gap, a successful innovation by a fringe firm im-

mediately turns it into the superstar in that line, with quality and embedded gap

set to 1 and operating a single production line, V (1, 1, 1). Thus, the fringe firm’s

value function depends solely on the superstar’s value at V (1, 1, 1) and is constant

for each rung distance in state space. Section 7 discusses alternative frictions and

scenarios involving fringe firms.

In thebalancedgrowthpath, aggregate outputYt, consumptionCt, and the value

function V (m, k, n) all grow at the constant rate g. Defining the stationary value

function as v(m, k, n) = V (m, k, n)/Yt, the HJB equation for a superstar firm on

the balanced growth path is given by:

ρ v(m, k, n) = max
zInt
j ,zEx

j ,zEmb
J

n∑
j=1

(
πj(mj, k, n)

+ pExs≥s′ z
Ex
j

(
v((mj, 1), k, n+ 1)− v(mj, k, n)

)
+ zIntj

(
v(mj + 1, k, n)− v(mj, k, n)

)
+ zEmb

j

(
v(mj, k + 1, n)− v(mj, k, n)

)
+ pExs′≥sZ

Ex
j

[
v(mj, k, n− 1)− v(mj, k, n)

]
+ Zj

(
v(mj, k, n− 1)− v(mj, k, n)

)
− γInt

(
zIntj

)ϑInt

− γEmb
(
zEmb
j

)ϑEmb

− γEx
(
zEx
j

)ϑEx

)
(28)

Innovation Decisions. The first-order conditions of the superstar and fringe firms’

value functionsdetermine their optimal innovation intensities. Along thebalanced

growth path, the superstar firm’s optimal rates of internal, embedded, and exter-
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nal innovation are given by

zIntsjt =

(
vt(mj + 1, es, ns)− vt(mj, es, ns)

γInt · ϑInt

) 1

ϑInt−1

, (29)

zEmb
sjt =

(
vt(mj, es + 1, ns)− vt(mj, es, ns)

γzEmb · ϑEmb

) 1

ϑEmb−1

, (30)

zExsjt =

(
vt(mj + 1, es, ns + 1)− vt(mj, es, ns)

γEx · ϑEx

) 1

ϑEx−1

. (31)

For the fringe firm, the optimal flow rate of innovation is

zfjt =

(
vt(1, 1, 1)− vft

γf · ϑf

) 1

ϑf−1

(32)

where vft shows the value function of fringe firms. The above expressions indicate

that the optimal investment in each type of innovation depends on the marginal

increase in the firm value function relative to the convex cost parameters (γ, ϑ).

Distribution Evolution. For notational simplicity, I suppress explicit indices for

firm s, industry j, and describe the evolution of the distribution based on state

variables for quality gap (m), embedded intangible level (k), and number of pro-

duction lines (n).

µt(m, k, n) = zIntt (m− 1, k, n) · µt(m− 1, k, n) + zEmb
t (m, k − 1, n) · µt(m, k − 1, n)

+ pExk≥k′ z
Ex
t (m, k, n− 1) · µt(m, k, n− 1)

+ zIntt (m− 1, k − 1, n) · zEmb
t (m− 1, k − 1, n) · µt(m− 1, k − 1, n)

+ zIntt (m− 1, k, n− 1) · pExk≥k′ z
Ex
t (m− 1, k, n− 1) · µt(m− 1, k, n− 1)

+ zEmb
t (m, k − 1, n− 1) · pExk≥k′ z

Ex
t (m, k − 1, n− 1) · µt(m, k − 1, n− 1)

+ zIntt (m− 1, k − 1, n− 1) · zEmb
t (m− 1, k − 1, n− 1)

· pExk≥k′ z
Ex
t (m− 1, k − 1, n− 1) · µt(m− 1, k − 1, n− 1)

− zIntt (m, k, n) · µt(m, k, n)− zEmb
t (m, k, n) · µt(m, k, n)

− pExk≥k′ z
Ex
t (m, k, n) · µt(m, k, n)− Zf

t (m, k, n) · µt(m, k, n)− pExk′≥k Z
Ex
t · µt(m, k, n)

(33)
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The law of motion of the distribution is driven by net flows into and out of the

cohort in state (m, k, n): inflows consist of firms that, following successful innova-

tion, enter (m, k, n); outflows consist of firms that leave (m, k, n) as a result of their

own innovation or innovation elsewhere. Concretely, the first three terms on the

right-hand side capture inflows frompredecessor states that are one step behind in

a single dimension. The next three terms capture inflows from states that are one

step behind in two dimensions (pairwise lags), while the subsequent term captures

inflows fromfirms that are one stepbehind in all threedimensions simultaneously.

The following group of terms describes outflows from state (m, k, n) owing to the

superstar firm’s own internal, embedded, or external innovation. Finally, the last

two terms account for outflows induced by innovation by fringe firms or by leaders

in other industries.

Distribution at Boundaries. The state space is bounded above and below, so spe-

cific conditions apply at its edges. If any state attains an upper bound, m = m̄,

k = k̄, or n = n̄ (including any joint combination), the outflow resulting from

a successful innovation that would advance the firm further in that dimension is

zero. This reflects the assumption that a firm’s lead in any dimension cannot ex-

ceed a technologically feasible maximum. Conversely, if any state attains a lower

bound, m = 1, k = 1, or n = 1 (or any joint combination), the outflow to a state

with a lower value in that dimension is zero. This condition functions as an absorb-

ing barrier, preventing a firm’s position from deteriorating below a fundamental

minimum.

Aggregate Variables. The joint distribution of (m, k, n) satisfies

m̄∑
m=1

k̄∑
k=1

n̄∑
n=1

µt(m, k, n) = 1. (34)

The labor market clears:

1 =

∫ 1

0

(
lsjt + lfjt

)
dj, (35)

26



and, using (25), (26) and (35), the normalized wage is

ωt =
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
ϕt(m,k,n)
σt(m,k,n)

+ 1− ϕt(m, k, n)
)
µt(m, k, n). (36)

Combining intermediate good sectors output (3), (6), (7) with labor demand of su-

perstar (25) and fringe firms (26) produces aggregate output

Yt = Qt ω
−1
t exp

(∑m̄
m=1

∑k̄
k=1

∑n̄
n=1 ln

[(
ξθkt

)β(((1− ξ)θkt)α

γnαs
t

ϕt(m, k, n)

σt(m, k, n)

)ε

+
(
λ−mt(1− ϕt(m, k, n))

)ε]1
ε

︸ ︷︷ ︸
≡Rt(m,k,n)

µt(m, k, n)

)
.

(37)

where

Qt = exp
(∫ 1

0

ln qsjt dj
)

The growth rate of the economy is23

gt = −gω,t + gQ,t + gR,t. (38)

In balanced growth, the economy grows at rate g, which is given by

g = lnλ
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zInt(m, k, n) + pExk≥k′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n).

(39)

Finally, the resource constraint satisfies

Yt = Ct +

∫ 1

0

(
I Intjt + IEmb

jt + IExjt

)
dj +

∫ 1

0

Ifjt dj, (40)

with

Ifjt =

∫
Fj

Iijt di.

Equilibrium Definition. The Markov Perfect equilibrium of the economy consists

of anallocation {Ct, Yt, ysjt, yfjt}, prices {rt, wt, psjt, pfjt}, andpolicies {zInt, zEmb, zEx,

23For details of the growth-rate calculation, see Appendix B.5.
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zf , z
Ent, lsjt, lfjt}, such that the final goods sector maximizes profit given prices.

The superstar firm maximizes profit given the quality gap, embedded level gap,

and number of production lines it has, (m, k, n), while the fringe firm maximizes

profit given prices. The superstar firm chooses the values of internal zInt (29), ex-

ternal zEx (31), and embedded innovation zEmb (29) whereas the fringe firm se-

lects its optimal innovation value zf (32). The real wage clears the labor market,

aggregate consumption and output grow at the same rate, equation (39), and the

resource constraint satisfies equation (40).

4 Quantitative Analysis

In the quantitative analysis section, calibration parameters are presented to illus-

trate how the model responds to variations in the investment ratio of transfer-

able to embedded intangibles, as well as changes in productivity, growth rate, and

markup. After the model consistently replicates the empirical observations of the

variables, Section 5 examines counterfactual scenarios, first shutting down the ef-

fects of embedded intangibles and then considering the span-of-control problem,

to assess their impact on the economy. Section 6 subsequently discusses misallo-

cation and the associated policy implications.

4.1 Empirical counterpart

For each production line n, I aggregate the joint distribution over the quality gap

and the embedded-intangible level describe as

µ(n) =
∑
m

∑
k

µ(m, k, n).

Fluidity at production line n is measured as the flow rate of incumbent replace-

ment. It is given by24

24The first term in the numerator captures external innovations (from higher embedded levels
k′ > k) that displace incumbents in (m, k, n); the second term captures innovation coming from
the fringe.
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Fluidity(n) =

∑
m

∑
k′>k

(
ZEx(m, k′, n)

)
µ(m, k, n) +

∑
m

∑
k

Zf (m, k, n)µ(m, k, n)

µ(n)
.

(41)

The average markup and the investment ratio at production line n are

σ(n) =

∑
m

∑
k

1− ε ϕ(m, k, n)
(1− ϕ(m, k, n)) ε

µ(m, k, n)

µ(n)
, (42)

IT

IEmb
(n) =

∑
m

∑
k

I Int(m, k, n) + IEx(m, k, n) + If (m, k, n)

IEmb(m, k, n)
µ(m, k, n)

µ(n)
. (43)

The growth and productivity by production line are

g(n) =

lnλ
∑
m

∑
k

(
zInt(m, k, n) + pExk≥k′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n)

µ(n)
,

(44)

Q(n) = e g(n). (45)

4.2 Calibration andModel Performance

The model is disciplined by 36 empirical moments, comprising 18 targeted and 18

untargetedmoments. The calibration relies on 17 parameters, ofwhich 4 are set ex-

ternally. The time-discount rate is fixed at ρ = 0.05, and the quality-improvement

step size is set to λ = 1.10 following Akcigit and Ates (2023). The cost scale and cur-

vature of embedded intangibles are taken from Cavenaile, Celik, Roldan-Blanco,

and Tian (2025), with γemb = 0.0664 and ϑemb = 3.3646. The remaining 13 parame-

ters,

{ε, θ, αs, α, γ, β, ξ, γInt, γEx, γf , ϑInt, ϑEx, ϑf},

29



are estimated internally. These parameters govern the key structural features of

the model. All parameter values are reported in Table 2.25

Table 2. Parameter Values

Parameter Description Value

———————External Calibration———————

ρ Discount rate 0.05
λ Transferable innovation step size 1.0100
γEmb Cost scale of embedded innovation 0.0664
ϑEmb Curvature of embedded innovation 3.3646

———————Internal Calibration———————

ε CES parameter 0.7747
θ Embedded innovation step size 1.0100
αs Curvature of Span of Control 0.5876
α Curvature of managerial productivity 0.5980
γ Scale of managerial productivity 0.4001
β Curvature of brand value 0.0661
ξ Share of brand value on embedded intangible 0.4351

γInt Cost scale of internal innovation 2.8571
γEx Cost scale of horizontal innovation 0.4001
γf Cost scale of fringe 5.1777
ϑInt Curvature of internal innovation 15.3154
ϑEx Curvature of horizontal innovation 5.4183
ϑf Curvature of fringe 7.9917

Note: The upper limit for the number of production lines n̄ is set to 6, and the upper bounds for m̄ and k̄ are set to 9.

Figure 4 reports the targeted moments used in the simulated method of mo-

ments (SMM) estimation, focusing onmarkup dynamics, the ratio of transferable-

to-embedded intangible investment, and the distribution of firms across produc-

tion lines. Overall, the model reproduces the principal empirical patterns: it cap-

tures both the direction and magnitude of the observed trends. Panel (A) shows

that themodel tracks the decline inmarkups as the number of production lines in-

creases, althoughmodest deviations remainat the extremesof thedistribution—the

model understates markups for single-line firms and slightly overstates them for

firmsoperatingmany lines. Panel (B) illustrates that the transferable-to-embedded

investment ratio iswellmatched across production-line categories, with simulated

25AppendixC.2 provides details on the solution algorithmand the simulatedmethodofmoments.
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moments closely following the empirical shape. Panel (C) demonstrates a strong

fit for the firm distribution, where simulated shares align closely with observed

data. Taken together, these results suggest that the model is well disciplined by

the targetedmoments and captures keymargins of firm behavior, with onlyminor

discrepancies concentrated in the tails of the markup profile.
(A)Markup (B) Transferable over Embedded

(C) Distribution

Figure 4. Targeted Moments: Markup, Investment Ratio, and Fluidity by Production Lines

Note: The orange line represents the dataset values, while the blue line shows the model simulation results along the bal-
anced growth path. The horizontal axis corresponds to the production line dimension.

Furthermore, Figure 5 evaluates the model’s performance on untargeted mo-

ments that were not used in estimation, namely productivity, aggregate growth

rates, and measures of fluidity across production-line categories. Panel (A) indi-

cates that the model captures the declining pattern of productivity as production-
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line count rises, with only small departures from the data at intermediate val-

ues. Panel (B) reveals systematic differences for the aggregate growth rate: the

model tends to undershoot growth for firmswith one to three production lines and

slightly overshoots growth at the upper end of the distribution. These discrepan-

cies imply that, while themodel reproduces the overall downward growth trend, it

misses some non-monotonic features present in the data. Panel (C) shows that the

model generally undershoots empirical fluiditymeasures acrossmost production-

line categories, with the notable exception of the sixth line where simulated fluid-

ity converges more closely to the observed value.
(A) Productivity (B) Growth Rate

(C) Fluidity

Figure 5. UntargetedMoments: Productivity, Fluidity andGrowthRatebyProductionLines

Note: The orange line represents the dataset values, while the blue line shows the model simulation results along the bal-
anced growth path. The horizontal axis corresponds to the production line dimension.
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4.3 Demand and Supply Effect of Embedded Intangibles

In the model, the parameter ξ governs the share of brand value (demand side),

while 1− ξ corresponds to organizational capital (supply side). A higher ξ implies

that brand value dominates (green line), whereas a lower ξ (blue line) indicates

a greater role for organizational capital. Figure 6 shows that firms derive greater

benefits from organizational capital than from brand value when expanding their

scope. The primary reason for this is that organizational capital can directly offset

some of the managerial difficulties associated with expansion, thereby promoting

growth across production lines.
(A) Distribution (B)Markup

(C) Growth Rate (D) Fluidity

Figure 6. Impact of ξ on Distribution, Markup, Growth, and Fluidity

Note: The green line represents the internally calibrated optimal value of ξ, while the blue line shows an upward shift in ξ
and the orange line shows a downward shift. The horizontal axis corresponds to the production line dimension.
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In contrast, brandvaluedoesnot provide this offsetting capability. Consequently,

when the share of brand value (ξ) is high, firms tend to stop expanding and pre-

dominantly operate a single production line. The associated decrease in markups

may seem counterintuitive at first. However, this decline is primarily driven by

a reduction in organizational capital, which diminishes managerial productivity

gains. This negative supply-side effect outweighs any positive demand-side effects

from brand value. 26 Furthermore, when ξ is high, superstar firms continue to ac-

cumulate embedded intangibles but do so while operating only a single line. This

accumulation creates a significant barrier to entry, as new entrants must match

this high level of intangibles to compete, even on a single line. As a result, both

market fluidity and the aggregate growth rate decrease. All these effects are re-

versed when the parameter ξ is lower. In this case, the larger share of organiza-

tional capital provides firms with a greater advantage, facilitating expansion and

improving the overall dynamics of creative destruction and growth. 27

5 Counterfactual Analysis

In this section, I conduct a series of counterfactual analyses to isolate the mecha-

nisms driving the results. First, I deactivate the span of control constraint. Second,

I shut down the accumulation of embedded intangibles. Finally, I shut down both

mechanisms jointly. This sequence allows me to quantify how each feature—and

their interaction—affects key outcomes: markups, the firm size distribution, mar-

ket fluidity, and the aggregate growth rate of the economy.

Shutting Down the Span of Control Constraint. To evaluate the impact of the span-

of-control constraint, I conduct a counterfactual analysis by setting the parameter

26In the calibration, the curvature of brand value is relatively low comparedwith that ofmanage-
rial productivity, which causes supply-side effects to dominate demand-side effects. Additionally,
the parameter γ, capturing the benefit scale of managerial quality, further reinforces this domi-
nance by amplifying supply-side responses relative to demand.

27This increase occurs relative to the composition of brand value versus organizational capital.
By contrast, Section 6 shows that increasing embedded intangibles leads to substantial inefficiency,
regardless of brand value or organizational capital.
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αs to zero28. This removes the mechanism that causes managerial productivity to

declinewith the number of production lines. The results are presented in Figure 7,

where the counterfactual scenario is plotted in green and the baseline calibration

in red.

The counterfactual generates a rightward shift in the firm size distribution, with

firms operating more product lines relative to the baseline. This expansion fol-

lows directly from the removal of span-of-control constraints: in the absence of

diminishing managerial returns, firms can add product lines without increasing

marginal costs. As a result, markups now increase with the number of product

lines, reversing the baseline pattern inwhich diversification reducedmarkups due

to rising marginal costs from span-of-control frictions. Under Bertrand competi-

tion, a firm’s markup in each product line is constrained by both its own marginal

cost and the marginal costs of its competitors. In the baseline, span-of-control

limitations increase the firm’s marginal costs as it diversifies, reducing markups.

Eliminating this channel keeps marginal costs low across all lines, allowing firms

to sustain higher markups as they expand.

On the other hand, the relaxation ofmanagerial constraints reducesmarket flu-

idity. As firms grow larger and manage more product lines, they face stronger in-

centives to invest in embedded intangibles due to increasing returns to scale. The

resulting accumulation of intangible capital raises entry barriers and lowers over-

all market fluidity. Despite the decline in market fluidity, the aggregate growth

rate rises. This counterintuitive result stems from a shift in the source of growth:

while creative destruction diminishes, innovation by incumbent superstar firms

increases. The relaxation of span-of-control constraints directly benefits multi-

product firms, which were previously the most constrained. Consequently, their

enhanced ability to expand and innovate boosts firm-level growth rates, increasing

aggregate growth relative to the baseline.

28The parameter αs is highly sensitive; setting it directly to zero prevents the model from con-
verging and producing results. Therefore, when αs = 0, k̄ is set to 6 rather than 9 in the baseline
calibration.
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(A) Distribution (B) Markup

(C) Growth Rate (D) Fluidity

Figure 7. Counterfactual Analysis Under Different Case

Note: The red line shows the baseline calibration; the green line shows the case with the span-of-control constraint shut
down (αs = 0); the blue line shows the case with embedded intangibles shut down (k̄ = 1); and the orange line shows the
case with both the span-of-control constraint and embedded intangibles shut down (αs = 0 and k̄ = 1).

ShuttingDownEmbedded Intangibles. Next, I examine the effects of shuttingdown

embedded intangibles by setting the k̄ = 1. In this counterfactual, superstar firms

can no longer benefit from accumulating brand value or organizational capital. As

shown in Figure 7 (blue line), this leads to a leftward shift in the firm size distri-
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bution, which becomes concentrated on a single production line. Themechanism

driving this shift is that expanding to additional lines remains costly due to the per-

sistent span-of-control constraint, while firms can no longer offset these costs by

improving managerial quality through embedded intangibles. Markups also de-

cline, as firms lose the pricing advantage provided by embedded intangibles rela-

tive to rivals. However, this reduction is modest, indicating that while embedded

intangibles contribute to markup growth, their overall quantitative impact is lim-

ited.

The aggregate growth rate rises, primarily driven by a significant increase in

market fluidity. Eliminating the accumulation of embedded intangibles removes

entry barriers for other superstar firms, allowing them to enter production lines

more easily without facing entrenched incumbents. This enhanced entry raises

the rate of creative destruction, and the resulting higher market fluidity directly

contributes to the increase in aggregate growth. These results highlight the im-

portant role of embedded intangibles in shaping market dynamics and economic

growth.

Both the removal of span-of-control constraints and the elimination of embed-

ded intangibles raise the aggregate growth rate; however, the sources and magni-

tudes of these increases differ. In the span-of-control counterfactual, the growth

boost is driven primarily by incumbents. In contrast, when embedded intangibles

are eliminated, the growth increase is driven by innovations from other superstar

firms on incumbent lines.

Shutting Down Both of Them Shutting down both mechanisms simultaneously al-

lows multiproduct firms to expand horizontally, which would shift the firm size

distribution rightward. However, themagnitude of this shift is significantly limited

compared to the scenario where only the span-of-control constraint is removed.

The primary reason is that, in this combined counterfactual, superstar firms can

no longer leverage the increasing returns to scale afforded by embedded intangi-

bles to facilitate their expansion. For the same reason, markups increase with the
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number of production lines, but this increase is more muted than in the counter-

factual involving only the span-of-control constraint. Without embedded intangi-

bles, firms lack one of the tools to amplify their pricing power as they grow.

On the other hand, market fluidity and the aggregate growth rate are higher

in this combined counterfactual than in any single shutdown case. This elevated

growth stems fromadual source: intensified innovationby incumbents andheight-

ened innovation by potential superstar firms in other industries, who find it easier

to enter and contest existing production lines due to the lowered barriers from the

absence of embedded intangibles.

To summarize, all three counterfactuals demonstrate that both span-of-control

constraints and embedded intangibles are necessary to replicate the empirical pat-

terns shown in Section 2.3. Omitting either component leads to deviations from

the observed facts: markups no longer decrease with scope, the firm size distri-

bution becomes concentrated on a single production line, or the declining trends

in growth and market fluidity across production lines are not reproduced. There-

fore, these two mechanisms together provide the minimal conditions required to

capture the key empirical regularities.

6 Policy Implication andMisallocation

This section first quantifies the effect of resource misallocation on aggregate out-

put and economic growth. Based on these insights, I implement policy tools to

examine how these frictions affect welfare and how they can be mitigated.

6.1 Misallocation

Misallocation in themodel operates through two distinct channels. The first stems

from markup dispersion across firms. The second arises because a potential su-

perstar entrant cannot capture a market unless its embedded intangible level is at

least as high as the incumbent’s, creating a barrier to entry. To quantify the effect of

markup dispersion, I adapt the method from Peters (2020) and decompose aggre-
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gate output Y into four components: the contribution from quality improvements

(Q), the contribution from embedded intangible capital (E), themisallocation due

to markup dispersion (M ), and a leftover term (S)29,

Yt = Qt × Et ×Mt × St (46)

where Et = exp

(∑
m

∑
k

∑
n

1

ε
ln
[
(ξθ)k×β

(
(1− ξ)θ)k×α

)ε]
µ(m, k, n)

)
,
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∑
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, and

St = exp
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n
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[( 1
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(
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] 1
ε
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)
.

DefiningM as the ratio of the geometric mean to the arithmetic mean, the key

misallocation term endogenously evolves with markup dispersion. 30 The results,

presented in Table 3, show that although there is substantial markup dispersion

across production lines, the aggregate dispersion effect on misallocation is rela-

tively small. As a result, the misallocation arising purely frommarkup dispersion

is minimal, accounting for only about 0.5% of output.

To analyze the second type of misallocation, I conduct a counterfactual experi-

ment that eliminates entry barriers. In this scenario, any superstar firm that suc-

cessfully makes a horizontal innovation can immediately enter a new production

line andbecome the incumbentwithout facing the embedded intangible constraint.

The results are striking: aggregate output more than triples. This dramatic gain is

primarily driven by a large increase in the quality improvement component (Q).

29For details see Appendix B.6
30The markup dispersion termM differs slightly from Peters (2020). Even if markups were con-

stant across superstar firms, dispersion between superstars and fringe firms would still exist, gov-
erned by the market share ϕ of superstar firms.
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The contribution from embedded intangibles (E) slightly decreases, a likely result

of the policy boosting investment in transferable technology (horizontal innova-

tion) and making embedded investment less critical for market entry. Further-

more, the markup dispersion term (M ) approaches one, and the residual term (S)

increases. These results suggest that policy attention should focus on lowering en-

try barriers. Enabling frictionless reallocation following horizontal innovations

substantially raises aggregate output, primarily through higher quality growth,

and therefore can materially reduce misallocation in the economy.

Table 3. Misallocation

Y Q E M S g

Base Scenario 2.512 1.923 0.691 0.995 1.900 0.007
Shut Down Entry Barrier 7.148 4.588 0.673 1.000 2.314 0.017

6.2 Policy Implication

Based on the frictions discussed in Section 6.1, I analyze three distinct tax regimes.

First, I implement a size-dependent tax on profit starting at 10% and gradually

increasing to 12.5%. Second, I consider a flat tax of 11.3% specifically on invest-

ments in embedded intangibles and horizontal expansion. Third, I examine the

joint implementation of both tax policies simultaneously. In all cases, the govern-

ment collects the tax revenue and redistributes it to households through lump-sum

transfers. To evaluate thewelfare effects of thesepolicies, I employ a consumption-

equivalent measure31 This metric quantifies the permanent percentage change in

consumption that would make households indifferent between the baseline eco-

nomic path and the policy-induced path. The welfare results show substantial

variation across policies. The size-dependent tax generates a welfare increase of

10.915%, accompanied by corresponding rises in consumption and output. In con-

trast, taxes targeting embedded and expansion investments yield more modest

gains of 1.745% and 2.176%, respectively. The size-dependent tax’s superior per-

31See Appendix B.7 for details on the consumption-equivalence welfare calculation.
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formance operates through two main channels. First, it reduces market segmen-

tation by making firms less exposed to diminishing returns frommanagerial span

of control. Second, it attenuates incentives to over-invest in embedded intangibles

by reducing cross-product synergies, ultimately lowering barriers to entry. The

joint implementation of all taxes demonstrates significant positive synergies. The

total welfare increase of 16.237% exceeds the sum of individual contributions, in-

dicating that the policies work complementarily to mitigate economic distortions

and enhance aggregate efficiency relative to the baseline economy.

Table 4. Welfare and Output Effects at Various Tax Levels

Tax Type

Size-Dependent Tax Embedded Inv Tax Expanding Inv Tax All Three
[0.1, 0.105, 0.11, 0.115, 0.12, 0.125] 0.113 0.113 Combined

∆Welfare (%) 10.915 1.745 2.176 16.237

∆C (%) 10.542 1.602 2.093 15.549

∆Y (%) 8.517 1.566 2.084 13.255

7 Model Extension and Discussion

Fringe Firm Value Function - Extension There are several ways to introduce fric-

tions into the value function of fringe firms. I consider two examples. (i) The prob-

ability of drastic innovation may decrease with the embedded intangible gap: as

a superstar firm increases its brand value and organizational capital, it becomes

more difficult for fringe firms to innovate successfully. In this case, entry barriers

become sharper than in the baseline, intensifying downward pressure on growth

and fluidity across production lines. (ii) Alternatively, an additional cost param-

eter η ∈ (0, 1) can be introduced, such that a larger gap in quality or embedded

intangibles reduces the benefit of becoming a superstar. At the same time, when

a superstar firm expands its number of production lines, the span-of-control con-

straint reduces its market share in each line, thereby encouraging fringe entry.

Consequently, the second friction has a smoother effect on firm dynamics than

the first scenario. The formal expression for the value function of a fringe firm is
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given by:

rtV
f
t (mj, es, ns)− V̇ f

t (mj, es, ns) = max
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[
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}
.

Fringe firms produce at a price equal to marginal cost; therefore, unlike su-

perstar firms, they cannot generate profit. The right-hand side of the equation

represents a fringe firm with a flow rate of pEx
s zfjt that successfully innovates and

becomes a new superstar with one gap level. Here, pEx
s captures the first type of

friction: as the embedded intangible level increases, the probability of successful

innovation by a fringe firm decreases. By contrast, the red-highlighted additional

term represents the second type of friction, where the drastic innovation cost pa-

rameter η reduces the value of fringe firm innovation. The first term in the second

line represents the superstar firm expanding its production line, which increases

themarginal cost of each existing production line and the fringe firm’s value func-

tion increases. The next two terms represent the superstar firm improving the

productivity gap on its existing production line and increasing its level of embed-

ded intangible assets. The third line of the second term indicates that superstars

in other industries successfully innovate. The last term captures the cost of inno-

vation required to become a new superstar.

Discussion on Size and Age Firms shifting their investment ratios are associated

with declines in productivity, markups, the growth rate, and fluidity, all of which

correlate with firm age and size. However, as shown empirically in Figure A3 and

within the model, these dynamics cannot be fully explained by age and size alone.
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From a theoretical side, when a superstar firm expands horizontally, its size in-

creases. Yet horizontal expansion is not the only path to growth; a firm may also

expand vertically by improving quality within existing product lines. Similarly,

firm age is inversely related to fluidity, as firms with more product lines extend

their life cycle while fluidity decreases.

Nevertheless, it is possible to observe superstar firms of the same age where

one operates a single product line while another spans multiple lines. Likewise,

a vertically improving firm may attain the same size as a horizontally expanding

firm. Even if such firms share the same age and size, their investment ratios, pro-

ductivity, markups, and growth dynamics differ fundamentally. The reason is that,

although age and size are correlated with these declining variables in the model,

they are not the causal drivers. Instead, the model identifies two essential mech-

anisms: horizontal expansion under span-of-control constraints and increasing

returns to embedded intangibles. It is through these channels that superstar firms

become multiproduct and reduce fluidity via intangible investment, thereby ex-

plaining the stylized facts that age and size alone cannot account for.

8 Conclusion

This paper proposes that as firms diversify across segments, their markups, pro-

ductivity, and the ratio of transferable to firm-specific intangible investment de-

cline. To explain this, I develop a unified endogenous growth model in which the

strategic allocation of innovative effort emerges directly fromfirms’ expansion de-

cisions. Horizontal expansion introduces span-of-control frictions, which weaken

managerial attention and reduce per-segment profitability. In response, multi-

segment firms do not simply innovate less; they innovate differently. They strate-

gically reallocate investment away from transferable intangibles, which generate

social spillovers and fuel creative destruction, and toward embedded intangibles,

which provide private firm-specific advantages. This shift allows firms to exploit

cross-product synergies and higher entry barriers, thereby privatizing returns at a
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significant social cost: it reducesmarket fluidity anddepresses the long-run engine

of growth, which is quality-improving innovation.

Quantitative analysis reveals that this mechanism constitutes a major source of

economicmisallocation. Crucially, I find that the entry barriers created by embed-

ded intangibles are far more consequential for welfare than pure markup disper-

sion. This finding underscores the need for policy to address this specific distor-

tion. Counterfactual experiments suggest that well-designed interventions, such

as a size-dependent tax on profits or a targeted tax on embedded investment, can

effectively rebalance private incentives with social goals. By discouraging exces-

sive, friction-inducing diversification and encouragingR&D, suchpolicies canhelp

realign the trade-off between diversification and growth to foster a more dynamic

and productive economy.

This framework establishes a foundation for several routes of future research.

First, the evolution of firm scope over the lifecycle would permit a richer analysis

of dynamic market segmentation strategies and their long-term consequences for

the direction and pace of innovation. Second, a formal welfare analysis compar-

ing the decentralized equilibrium to a social planner’s solution is a critical next

step. Such a comparison would allow for the precise derivation of optimal policy

instruments to counteract the inefficiencies and knowledge-spillover frictions en-

gendered by diversification. Third, themodel generates testable empirical predic-

tions regarding how firms endogenously respond to span-of-control constraints.

Micro-econometric work could investigate the relative efficacy of adaptive strate-

gies such as organizational redesign, investments in information technology, and

human capital accumulation. Finally, a critical question is whether embedded in-

tangible capital slows idea diffusion by limiting spillovers. Answering this with

richer microdata and dynamic structural methods will be key to guiding policies

that balance the private gains from diversification with the broader social returns

to innovation and competition.
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Appendices

A Empirical Appendix

A.1 Dataset andMeasurement Details

Table A1. Example Firms Segment in Compustat Segment Dataset

Company Segments

TOYOTAMOTOR CORP
Financial Services
Automotive
All Other

PROCTER & GAMBLE CO

Health Care
Grooming
Corporate
Beauty
Baby, Feminine & Family Care
Fabric & Home Care

TESLA INC Energy Generation & Storage
Automotive

Table A2. Example Firm Segment in HP Firm Scope Dataset

Company Segments

TESLA INC

Batteries
Automotive (Brakes, Trim, Axle, Engines, Chassis)
Automotive Safety (Airbags)
Car Dealerships
Energy / Cogeneration
Utilities / Electric Power
Smart Metering / Grid Tech
Power Electronics / Voltage
Solar / Renewable Energy
Hardware & Software Solutions
Ticketing / Scanning (Software/Systems)

Note: data source, Hoberg and Phillips, 2025

Measurement Details. The sample covers 1990–2019. The finance and utilities sec-

tors are excluded from all analyses, and estimations are conducted separately for
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each 2-digit NAICS industry. I employ the approach of Gandhi, Navarro, and Rivers

(2020) to estimate firm-level total factor productivity. The gross-output production

function is specified as

Yit = F (Lit, Kit,Mit) + ωit + ϵit, (47)

where Yit is (log) gross output (sale), Lit is labor (emp),Kit is capital (ppegt), and

Mit denotes flexible (intermediate) inputs (cogs). The term ωit denotes an unob-

served firm productivity shock that is observed by firms when choosing inputs,

and ϵit is an iid error term.

A central identification challenge is that the presence of flexible inputs creates a

non-identification problem for nonparametric gross-output production functions

when standardproxy-variable approaches are applied, becauseflexible-input choices

reflect contemporaneous productivity. They resolve this by exploiting a transfor-

mation of the firm’s short-run first-order condition for intermediates to obtain

cross-equation restrictions that isolate theflexible-input contributionand thusper-

mit nonparametric identification of the production function and input elasticities.

Empirical proxy (material share): Define the intermediate share

sit ≡
COGSit

Salesit

,

with both numerator and denominator deflated with cpi. GNR show that sit is the

empiricalmoment implied by the transformed FOC and can be used to recover the

flexible-input elasticity nonparametrically32.

First stage (nonparametric share regression): Apply the GNR transformation of

the FOC for intermediates and estimate the resulting relation between sit and the

observable state variablesnonparametrically. This yields anobservation-level flexible-

input elasticity β̂m,it

32Estimating Ackerberg, Caves, and Frazer (2015) and Levinsohn and Petrin (2003) methodology,
I replace proxy variable revenue share with capital expenditure (capx).
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Second stage (fixed-input elasticities andTFP):With β̂m,it in hand, identify the re-

maining input elasticities β̂l, β̂k using the cross-equation restrictions and standard

Markov term ωit = g(ωit−1) + ξit. Construct firm TFP as the residual

ω̂it = Yit − β̂lLit − β̂kKit − β̂m,itMit.

A.2 Additional Figures and Empirical Results

(A)Markup
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Figure A1. Markup, Productivity, Investment Ratio and Fluidity with HP Firm Scope
Dataset

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Markups, the investment ratio, and market fluidity are measured for the
2019 cross-section. All variables are winsorized at the 95th percentile. Firms are grouped by their
number of production lines (1–3, 4–6, 7–9, 10–15, and 16+). Theplotted values are the averageswithin
each bin.
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(A) Investment Ratio
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Figure A2. US Firms; Markup, Productivity, Investment Ratio and Fluidity by Production
Lines

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Variables are measured for the 2019 cross-section and winsorized at the
95th percentile.
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(A) Firm Age Quintile
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(B) Firm Size Quintile
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Figure A3. Firm Age and Size

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Markups, the investment ratio, and market fluidity are measured for the
2019 cross-section. All variables arewinsorized at the 95thpercentile. Firmsize ismeasuredby total
employment (EMP), and firm age ismeasured by years since IPO. Firms are grouped into quantiles;
the plotted values represent the average within each quantile.
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(A) Productivity LP
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Figure A4. Productivity Measures with Different Methods
Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. All variables are winsorized at the 95th percentile. Productivities aremea-
sured for the 2019 cross-section. LP: Levinsohn and Petrin (2003); ACF: Ackerberg, Caves, and
Frazer (2015); GNR: Gandhi, Navarro, and Rivers (2020)

Table A3. Summary Statistics

Variable Summary Statistics

Mean SD Median P10 P25 P75 P90

Investment ratio 1.300 1.310 0.873 0.129 0.317 1.760 3.290
R&D to Sales ratio 0.143 0.187 0.0715 0.006 93 0.0202 0.185 0.364
Markup 1.630 0.830 1.320 0.870 1.020 1.990 3.430
Productivity 1.910 0.972 1.730 0.754 1.010 2.770 3.300
Log sales 13.100 2.570 13.200 9.840 11.400 14.900 16.400
Log total assets 13.600 2.520 13.600 10.300 11.800 15.300 16.800
Log employees 7.490 2.310 7.530 4.380 5.820 9.130 10.500

Number of unique firms 1,711

This table reports summary statistics for firm characteristics and themain variables used in the paper. The investment ratio
of Transferable over Embedded is defined in Section 2. Investment ratio, R&D-to-sales, and productivity are winsorized at
the 95th percentile, whilemarkup iswinsorized at the 90th percentile. All other variables are presented in logarithmic form.
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Figure A5. Density Comparison Compustat and Compustat Merged

Note: Both datasets exclude utilities and finance sectors, and all variables are measured for the 2019 cross-section. The
Compustat merged dataset further excludes firms with missing or non-positive R&D, SG&A, or segment information.

55



Table A4. Regression Results: Compustat Dataset
Panel A:Markup and Productivity

Pooled OLS Two-way FE

(2) (3) (6) (7)
Markup Productivity Markup Productivity

Production Lines −0.099∗∗∗ −0.056∗∗∗ −0.111∗∗∗ −0.032∗∗∗
(0.007) (0.010) (0.008) (0.004)

Num. Obs. 40,517 40,517 40,517 40,517
Adj. R2 0.042 0.025 0.111 0.808
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Panel B: Investment Ratio and Fluidity

Pooled OLS Two-way FE

(1) (4) (5) (8)
Transferable/Embedded Fludity Transferable/Embedded Fludity

Production Lines −0.092∗∗∗ −0.449∗∗∗ −0.100∗∗∗ −0.302∗∗∗
(0.008) (0.031) (0.009) (0.033)

Num. Obs. 41,071 30,403 41,071 30,403
Adj. R2 0.085 0.043 0.127 0.169
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Notes: Each column reports coefficients from a separate regression. Standard errors clustered
by firm id in parentheses. Significance levels:∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns 1–4:
Pooled OLS specifications; Columns 5–8: Two-way fixed effects (year and industry).
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Table A5. Regression Results: Hoberg - Phillips Dataset:
Panel A:Markup and Productivity

Pooled OLS Two-way FE

(2) (3) (6) (7)
Markup Productivity Markup Productivity

Production Line 0.030∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.009∗∗∗

(0.005) (0.002) (0.005) (0.001)

Num. Obs. 55,250 55,250 55,250 55,250
Adj. R2 0.001 0.029 0.006 0.778
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industy No No Yes Yes

Panel B: Investment Ratio and Fluidity

Pooled OLS Two-way FE

(1) (4) (5) (8)
Transferable/Embedded Fluidity Transferable/Embedded Fluidity

Production Line 0.028∗∗∗ 0.201∗∗∗ 0.027∗∗∗ 0.247∗∗∗

(0.002) (0.006) (0.002) (0.006)

Num. Obs. 55,514 50,116 55,514 50,116
Adj. R2 0.101 0.163 0.137 0.344
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Notes: Each column reports coefficients from a separate regression. Standard errors clustered
by firm id in parentheses. Significance levels:∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns 1–4:
Pooled OLS specifications; Columns 5–8: Two-way fixed effects (year and industry).
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B Model Appendix

B.1 Final Good Sector Demand

The final good sector’s profit maximization problem is:

max
yjt

exp

(∫ 1

0

ln yjtdj

)
−
∫ 1

0

pjtyjtdj. (48)

Thefirst-order condition yields the inverse demand function for each intermediate

good j:

pjt =
Yt
yjt
. (49)

B.2 Intermediate Good Sector Demand

The cost minimization problem for the intermediate sector j is:

min
ysjt,yfjt

psjtysjt + pfjtyfjt s.t. yjt =
(
χ(es)y

ε
sjt + yεfjt

) 1
ε . (50)

The first-order condition with respect to the superstar firm’s output ysjt is:

psjt = λχ(es)y
1−ε
jt yε−1

sjt , (51)

where λ is the Lagrange multiplier. Raising both sides to the power ε
ε−1

and sim-

plifying allows us to solve for the ideal price index pj for sector j:

λ =
(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

) ε−1
ε ≡ pj. (52)

Substituting λ = pj back into the first-order condition yields the inverse demand

function faced by the superstar firm:

psjt = pjχ(es)y
1−ε
jt yε−1

sjt . (53)
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Finally, substituting the final good producer’s demand yjt = Yt/pj and solving for

ysjt provides demand function:

ysjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1

sjt Yt. (54)

B.3 Superstar FirmMaximization Problem: Bertrand Competition

The superstar firm competes à la Bertrand with a continuum of fringe firms. Its

profit maximization problem in industry j is:

max
psjt

(psjt −MCsjt) ysjt s.t. ysjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1

sjt Yt. (55)

Substituting the expression for pj into the demand function, the objective function

can be expanded as:

max
psjt

[
p

ε
ε−1

sjt χ(es)
1

1−εYt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

−MCsjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

p
1

ε−1

sjt χ(es)
1

1−εYt

]
.

(56)

After computing the derivative and factoring common terms, this condition can

be expressed as:

∂π

∂psjt
= Ytχ(es)

1
1−ε

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

×

{[
ε

ε− 1
p

1
ε−1

sjt −MCsjt
1

ε− 1
p

2−ε
ε−1

sjt

]

−
(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
χ(es)

−1
ε−1

ε

ε− 1
p

1
ε−1

sjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1
)}

= 0.

(57)

0 =

[
ε

ε− 1
p

1
ε−1

sjt −MCsjt
1

ε− 1
p

2−ε
ε−1

sjt

]
−
(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
χ(es)

−1
ε−1

ε

ε− 1
p

1
ε−1

sjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1
)
.

(58)
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To simplify, multiply both sides by psjt and substitute the market share definition

ϕsjt from (19), yielding:

(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
ϕsjt

ε

ε− 1

)
=

[
ε

ε− 1
p

ε
ε−1

sjt −MCsjt
1

ε− 1
p

ε
ε−1

sjt

]
. (59)

First, divide both sides by p
ε

ε−1

sjt , then by ε
ε−1

. After rearranging terms, the expres-

sion simplifies to:

ε(1− ϕsjt) =
MCsjt

psjt
(1− εϕsjt). (60)

Solving for the optimal price psjt gives:

psjt =
1− εϕsjt

ε(1− ϕsjt)
·MCsjt. (61)

To determine the optimal labor demand, equating output (6) and demand (54)

yields

qsjt ψ(es, ns) lsjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1
sjt Yt. (62)

Multiplying both sides by psjt and dividing by wt gives

psjt
qsjt ψ(es, ns)

wt︸ ︷︷ ︸
inverse MCsjt

lsjt = p
ε

1−ε
j χ(es)

1
1−εp

ε
ε−1
sjt︸ ︷︷ ︸

ϕsjt

Yt
wt︸︷︷︸
ω−1
t

. (63)

This expression leads directly to equation (25).

B.4 Superstar FirmMaximization Problem: Cournot Competition

In the à la Cournot setup, a superstar firmanda continuumof fringefirms compete

by choosing quantities to sell rather than engaging in price competition as in the

à la Bertrand case. Its profit-maximization problem in industry j is

max
ysjt

πsjt = max
ysjt

(psjt −MCsjt) ysjt, (64)

s.t. psjt = χ(es) y
−ε
jt y

ε−1
sjt Yt, and yjt =

(
χ(es) y

ε
sjt + yεfjt

)1/ε
. (65)
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Differentiate the profit function with respect to ysjt:

dπsjt
dysjt

= (psjt −MCsjt) + ysjt
dpsjt
dysjt

= 0. (66)

Differentiate the inverse demand (65) to obtain

dpsjt
dysjt

= psjt

(
−ε 1

yjt

dyjt
dysjt

+
ε− 1

ysjt

)
. (67)

Differentiate yjt with respect to ysjt:

dyjt
dysjt

= χ(es) y
ε−1
sjt y

1−ε
jt . (68)

Substituting (68) and (65) into (66) yields

(psjt −MCsjt) + ysjt psjt

(
−εχ(es) yε−1

sjt y
−ε
jt +

ε− 1

ysjt

)
= 0. (69)

Using the market-share definition

psjt ysjt
Yt

= χ(es) y
ε
sjt y

−ε
jt ,

and dividing both sides by psjt, rearrangement gives the inverse markup condition

MCsjt

psjt
= ε(1− ϕsjt). (70)

The relative price ratio between fringe and superstar firms is therefore

pfjt
psjt

=
1− ϕsjt

ϕsjt

MCfjt

MCsjt

. (71)

Using the inverse demand expressions leads to

χ(es)

(
yfjt
ysjt

)ε−1

=
1− ϕsjt

ϕsjt

MCfjt

MCsjt

. (72)
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Substituting themarginal-cost expressions for the fringe and superstarfirmsyields

(
yfjt
ysjt

)ε−1

=
1

χ(es)

1− ϕsjt

ϕsjt

1

λmj ψ(es, ns)
. (73)

Equation (73) shows that the relative output depends on themarket share, the qual-

ity gap, the embedded intangible level, and the firm’s production-line parameter.

Rearranging the market-share definition gives

χ(es) y
ε
sjt y

−ε
jt =

χ(es) y
ε
sjt

χ(es) yεsjt + yεfjt
=

1

1 +
1

χ(es)

(
yfjt
ysjt

)ε , (74)

which shows that market share depends on the output gap and the embedded in-

tangible level. Therefore, the output gapdepends on thequality gap, the embedded

intangible level, and the number of production lines associated with superstar s.

B.5 Aggregate Output and Growth Rate

Using the superstar (6) and fringe firm (7) output equations into (3) gives

Yt = exp

(∫ 1

0

ln

[(
ξest
)β(

qsjt

(
(1− ξ)est

)α
γnαs

st

lsjt

)ε
+
(
qfjt lfst

)ε]1/ε
dj

)

Yt = exp

(∫ 1

0

ln

[(
qεsjt

((
ξest
)β(((1− ξ)est)α

γnαs
st

lsjt

)ε
+
(
λ−mjt lfst

)ε))]1/ε
dj

)

= exp

(∫ 1

0

ln qsjtdj

)
︸ ︷︷ ︸

Qt

exp

(∫ 1

0

ln

[
((ξest)

β

(
((1− ξ)est)α

γnαs
st

lsjt

)ε

+
(
λ−mjt lfst

)ε] 1
ε

dj

)
,

(75)
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and , along with the labor demands in (25) and (26), and factoring out ω−1
t , aggre-

gate output can be expressed as

Yt = Qt ω
−1
t exp

(∫ 1

0

ln

[
(ξest)

β

(
((1− ξ)est)α

γnαs
st

ϕsjt

σsjt

)ε

+
(
λ−mjt(1− ϕsjt)

)ε] 1
ε

dj

)
.

(76)

Since everything in the integrand depends only on the gaps (m, k, n), the expres-

sion can be written in discrete state space as

Yt = Qt ω
−1
t exp

(∑m̄
m=1

∑k̄
k=1

∑n̄
n=1 ln

[(
ξθk
)β(((1− ξ)θkt)α

γnαs

ϕt(m, k, n)

σt(m, k, n)

)ε

+
(
λ−mt(1− ϕt(m, k, n))

)ε]1
ε

︸ ︷︷ ︸
≡Rt(m,k,n)

µt(m, k, n)

)
.

(77)

lnYt+∆t − lnYt =
(
lnQt+∆t − lnQt

)
+ lnωt − lnωt+∆t

+
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
Rt+∆t(m, k, n)−Rt(m, k, n)

)(
µt+∆t(m, k, n)− µt(m, k, n)

)
+ o(∆t).

(78)

where

lnQt+∆t − lnQt = lnλ

[
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zIntt (m, k, n) + pExs≥s′ z

Ex
t (m, k, n) + Zf

t (m, k, n)
)
µt(m, k, n)

]
∆t

+ o(∆t). (79)

Dividing by∆t and taking the limit∆t→ 0, the growth rate of the economy is

gt = −gω,t + gQ,t + gR,t. (80)

In the steady state, the distribution µt(m, k, n) is constant, implying that Rt is con-

stant. Moreover, wages grow at the same rate as output, so the real wage remains

constant. Therefore, in steady state the growth rate of the economy is determined
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solely by quality improvements:

g = gQ = lnλ

[
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zInt(m, k, n) + pExs≥s′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n)

]
.

(81)

B.6 Decomposition of Output

Starting from (76) and factoring out the term (ξest)
β
(

((1−ξ)est)α

γ nαs
st

)
, aggregate output

can be written as

Yt = Qt ω
−1
t exp

(∫ 1

0

ln

[(
ϕsjt

σsjt

)ε
+

1

(ξest)β

(
γ nαs

st

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε]1/ε
dj

)
.

(82)

Define the multiplicative factor that collects the factored-out terms as

Et = exp

(∫ 1

0

ln

[(
ξest
)β( ((1−ξ)est)α

γ nαs
st

)ε]1/ε
dj

)
. (83)

Next multiply and divide the integrand by the linear weight
ϕsjt

σsjt
+ (1− ϕsjt). After

this algebraic stepwe obtain a decomposition that isolates a simplemean term and

a residual term:

Yt = QtEt ω
−1
t exp

(∫ 1

0

ln
[
ϕsjt

σsjt
+ (1− ϕsjt)

]
dj

)

× exp

(∫ 1

0

ln

[( 1
γnαs

st

ϕsjt

σsjt

)ε
+

1

(ξest)β

( 1

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε
ϕsjt

σsjt
+ (1− ϕsjt)

]1/ε
dj

)
.

(84)

Finally, using (36) and defining the multiplicative mean term

Mt =
exp
( ∫ 1

0
ln
[ϕsjt

σsjt
+ (1− ϕsjt)

]
dj
)

∫ 1

0

[ϕsjt

σsjt
+ (1− ϕsjt)

]
dj

, (85)
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the output decomposition can be written as

Yt = Qt × Et ×Mt × St,

where

St = exp

∫ 1

0

ln

[( 1

γ nαs
st

ϕsjt

σsjt

)ε
+

1

(ξest)β

( 1

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε
ϕsjt

σsjt
+ (1− ϕsjt)

]1/ε
dj

 .

(86)

B.7 Consumption EquivalenceWelfare Measure

On thebalancedgrowthpath, consumptiongrowsat rate g, so thatC(t) = C0 exp(gt).33

DefiningwelfareΩ as the present value of lifetime utility fromconsumption yields:

Ω =

∫ ∞

0

e−ρt ln(C(t))dt (88)

= ln(C0)

∫ ∞

0

e−ρtdt+ g

∫ ∞

0

te−ρtdt. (89)

Solving these integrals gives:

Ω =
ln(C0)

ρ
+

g

ρ2
(90)

=
1

ρ

(
lnC0 +

g

ρ

)
. (91)

Equivalent Welfare Changes Between Economies To compare welfare between

twoeconomies—acalibratedbenchmark economy (Cal) anda taxed economy (Tax)

on their respective balanced growth paths—I compute the percentage change δ in

33The C0 consumption level is given by:

C0 = Y0 −
∫ 1

0

(
IInt0 + IEmb

0 + IEx
0 + If0

)
dj +G0. (87)

In this equation, the subscript 0 represents calibrated optimum values on the balanced growth
path, andG is the lump-sum transfer of government taxes.
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lifetime consumption that would make households indifferent between the two.

The required compensation δ satisfies:

ΩTax =
1

ρ

(
ln
(
CCal

0 (1 + δ)
)
+
gCal

ρ

)
. (92)

Solving equation (92) for δ:

lnCTax
0

ρ
+
gTax

ρ2
=

ln[CCal
0 (1 + δ)]

ρ
+
gCal

ρ2
(93)

ln

(
CTax

0

CCal
0

)
+
gTax − gCal

ρ
= ln(1 + δ) (94)

δ =
CTax

0

CCal
0

exp

(
gTax − gCal

ρ

)
− 1. (95)

If δ > 0: households require compensation to remain in the benchmark economy

(Cal).

If δ < 0: households would pay to move to the taxed economy (Tax).

C Numerical Appendix

C.1 Additional Numerical Results

Table C1. Sensitivity Matrix

Parameter Markup Growth Rate Investment Ratio Innovation Rate

ε −1.052% −2.113% −25.815% −3.763%

α −0.010% −0.324% −3.736% −0.521%

αs 0.000% −0.027% −0.043% −0.062%

β −0.002% −0.064% −0.862% −0.106%

γ −0.013% −0.398% −4.342% −0.639%

ξ −0.004% −0.129% −1.484% −0.210%

Note: Each row reports the percentage change in variables resulting from a 1% change in the parameter value.
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C.2 Solution Algorithm

This algorithm computes the balanced growth path with a three dimensional state

space (m, k, n). The solution involves finding the value functions vs(m, k, n) and

vf (m, k, n), the innovation rates zInt, zEmb, zEx, zf , and the stationary distribution

µ(m, k, n) that jointly satisfy the model’s equilibrium conditions.

BGP Equilibrium Solution:

1. Compute static values: Calculate static market shares and profit values using

equations (23) and (19).

2. Initialization: Initialize the value functions vs(m, k, n) and vf (m, k, n), as well

as the stationary distribution µ(m, k, n).

3. Step 1: Solve HJB Equations (Backward Iteration)

(a) Set vold(m, k, n).

(b) Repeat untilmax |vnew − vold| < tolerance:

• Compute policy functions x(m, k, n) from the FOCs using vold.

• Solve the discretized HJB equations for vnew(m, k, n).

• Update vold ← vnew.

4. Step 2: Solve Kolmogorov Forward Equation (KFE)

(a) Set µold(m, k, n).

(b) Repeat untilmax |µnew − µold| < tolerance:

• Solve thediscretizedKFE forµnew(m, k, n)using thepolicy functions zInt, zEmb, zEx, zf .

• Update µold ← µnew.

5. Step 3: Repeat Steps Until Convergence of Value Functions and Distribution

Finally, to determine the optimal parameter values, search over the parameter

space to minimize the objective function,

Minimize(z) =
Z∑

z=1

∣∣model(z)− data(z)∣∣
1
2

∣∣model(z)∣∣+ 1
2

∣∣data(z)∣∣ .
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